

LA-UR-17-30409

Approved for public release; distribution is unlimited.

Title: Development of the MARK4 Design

Author(s): Zavorka, Lukas

Mocko, Michael Jeffrey

Koehler, Paul E.

Intended for: A review of the Lujan target Mark-IV neutronics design

Issued: 2017-11-13

Development of the MARK4 Design

A review of the Lujan target Mark-IV neutronics design

L. Zavorka, M. Mocko, P. Koehler

Introduction

Development of the MARK4 Design

A review of the Lujan target Mark-IV neutronics design

11/15/2017

- Where did we start?
 - Introduction of preliminary designs
- How did the preliminary designs develop?
- Disk target
 - Main components of the target
 - Target thickness and orientation
- Rod target
 - Role of a coupled water moderator
 - Additional reflector (Be, Pb)
- Alternative target designs
 - Different shapes and positions
 - Pros & Cons of the proposed designs
- Where did we arrive?
 - Summary of the favorite designs
- Conclusion

Preliminary designs (M. Mocko and S. Nowicki)

- Intensity study using the W disks available in Mark-III
 - Attention was not paid to resolution

0 plates in the middle target (translated target)

Preliminary designs (continued)

Los Alamos National Laboratory

Preliminary designs (continued)

- IF
- The target is translated into the field of view &
- Flight paths remain in their current configuration (i.e., current FOV)
- **THEN** Additional measures must be taken to suppress backscattered neutrons
 - > Introduction of moderator/reflector wings (H₂O, Be, W, Pb)

 The wings could be omitted if the flight paths were reconfigured and focused directly on the production region (i.e., centered FOV)

Cylindrical target

Original idea:

- Split the middle target of Mark-III into two pieces and move one of them into the upper tier of Mark-IV, which should:
 - Increase flux in upper tier
 - Conserve a significant part of thermal flux in lower tier

Compact disk target

• 90° rotation of the cylindrical target should provide:

Compact disk target

- Proposed design of the compact disk target provides:
 - Substantial increase in the keV-to-MeV neutron flux
 - Significant reduction of the time resolution in both
 FWHM and tails of the distribution

- Thermal flux in LT is 72% relative to Mark-III without affecting background or time resolution
- This is a preferred design for Centered FOV

Compact rod target

- The main advantages of the compact rod target:
 - Significant reduction of the gamma flash
 - More uniform distribution of neutrons in Real FOV

- Thermal flux in LT is 74% relative to Mark-III without affecting background or time resolution
- This is a preferred design for Real FOV

Compact rod target coupled with water moderator

Additional target designs

The main constraints on the new target design:

- Costs
- Spatial limits
- Engineering requirements (materials, robustness, cooling)
- Operational perspective (simplicity, insensitivity to proton beam position)
- Leave ~75% of the thermal neutron flux for the lower tier relatively to Mark-III
- No additional major impacts on material science (resolution, background)

Disk targets at 30°, 45°, and 60°

Pros and cons in the upper tier:

- ✓ Insensitive to the proton beam position Flux in lower tier:
- X Moderate increase in flux
- X Resolution is not impressive

78% & 67% relative to Mark-III:

800 MeV

Cylindrical target with wings

Pros and cons in the upper tier:

- ✓ Insensitive to the proton beam position
- X Moderate increase in flux
- X Resolution is not impressive

• Flux in lower tier: 65% relative to Mark-III:

Energy (eV)

Summary of alternative target designs

- A wide range of various target designs has been studied with respect to the previously mentioned constraints
- The optimization process has resulted in finding the solution in the space of many independent (often contradict) variables
- None of the alternative designs reaches the performance of the compact disk target

Energy (eV)

Conclusion

- We developed a target design with the following characteristics in
- Upper tier:
 - Superior resolution and
 - Significant gain in the keV-to-MeV energy range
- Lower tier:
 - -~75% of the thermal flux relative to Mark-III
 - NO impact on time resolution
 - NO change in background
- The target design complies with the requirements on
 - Costs
 - Simplicity
 - Engineering
 - Manufacturing
 - Operational
- Great experimental results are expected

Thank you for your attention.

Backup slides

No water moderator (o22p)

